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Synchronization due to common pulsed input in Stein’s model

Jianfeng Feng, David Brown, and Guibin Li
Computational Neuroscience Laboratory, The Babraham Institute, Cambridge CB2 4AT, United Kingdom

~Received 28 June 1999!

It is known that stimulus-evoked oscillatory synchronization among neurones occurs in widely separated
cortical regions. In this paper we provide a possible mechanism to explain the phenomenon. When a common,
random input is presented, we find that a group of neurones—of Stein’s~integrate-and-fire! model type with or
without reversal potentials—are capable of quickly synchronizing their firing. Interestingly the optimal average
synchronization time occurs when the common input has a high coefficient of variation of interspike intervals
~greater than 0.5! for this model with or without reversal potentials. The model with reversal potentials more
quickly synchronizes than that without reversal potentials.

PACS number~s!: 87.19.La, 87.10.1e
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I. INTRODUCTION

How neurones couple with each other to firesynchro-
nously is an important issue both theoretically and expe
mentally@1–5#. It has been widely accepted that informatio
is encoded by neurones via a variety of schemes: from
classic view of rate coding to the modern view involvin
time coding@2#. A typical example of time coding is brain
waves, oscillating at about 40 Hz for a group of neurone
the so-called gamma rhythms, which appear to be invol
in higher mental activity and therefore are considered to
essential for processing information by the brain@4#. How-
ever, how neurones respond to external stimuli to organ
locally or over a wider range to fire together remains elusi
with a few mechanisms, such as recurrent inhibition, mut
excitation, intrinsic oscillators, and mutual inhibition havin
been put forward.

For the purpose of elucidating mechanisms of oscillat
synchronisation, networks of integrate-and-fire units ha
been extensively studied in the literature@6–9#. We mention
but a few studies. In Ref.@10# the authors proved the exis
tence of the Lyapunov function for a specific case of int
actions. In Ref.@11# two identical interacting neurones we
investigated and it was found that whether two neurones
synchronously or not depends on the rise time of the syna
per se; in particular, inhibitory rather than excitatory intera
tions facilitate the synchronization of neuronal activities.

These studies above are confined to the case of deter
istic inputs, but there is a consensus that the inputs and
puts of single neurones are frequently stochastic. If low a
plitude random noise is added to the system discussed in
@11# then the coherent behavior simply disappears, as th
retically studied in Ref.@12#. Furthermore, and most impor
tantly, experimental results@3# tell us that neurones in widely
separated areas—which implies there is no local interac
among them—are capable of synchronizing with zero ti
lag. This possibly indicates that inputs play a vital role in t
synchronization, at least for neurones in widely separa
areas~see further discussion in Secs. VI and VII on loc
interactions and Ref.@13#!. The purpose of the paper, as
first step towards carrying out a systematic study on poss
mechanisms of synchronization with stochastic inputs, is
PRE 611063-651X/2000/61~3!/2987~9!/$15.00
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reveal when and how efficiently common inputs ensure t
neurones fire synchronously.

We first consider two identical neurones with differe
initial states and suppose that they are subjected to comm
but stochastic, inputs propagating along excitatory and
hibitory synapses. The two neurones can be viewed as
cated either in separate areas~with no local interaction!, or
they receive inputs from many other neurones and there
the contribution of each to the process of synchronization
much smaller than surrounding inputs, or that local inter
tions ensure common inputs. Underdifferent (independent)
stimuli the synchronization is not observable, but under
samestimuli the neuronal activities quickly cohere with ea
other. This suggests that probably one of the most impor
factors which synchronizes neuronal activities is theircom-
mon inputs. Let us denote the time at which two neuron
synchronize as thesynchronization time. Interestingly, the
shortest average synchronization time is attained when
coefficient of variation of interspike intervals@CV ~ISI!# of
individual neurones is greater than 0.5, i.e., inside a high
~ISI! region. Although the different roles of noise accomp
nying the signals in the brain have been explored~see, for
example, Ref.@14#!, why the brain employs such a nois
signal for processing information remains unclear. O
theory here reveals one possible role of noise: to synchro
neuronal activities quickly. Although here we exclusive
consider the case of inputs with zero rise time (d-pulse cur-
rent input!, we expect our conclusions can be generalized
a more realistic case with a nonzero rise time course~see
Sec. VI!. Further numerical examples and theoretical resu
on the synchronization of a large group of neurones are
cluded and properties of synchronization time are discus

We want to compare our approach and results with th
in the literature. Synchronization is obviously one of t
most important phenomena observed in nature, but the m
mimicking the phenomenon is usually hard to tackle the
retically. One of the most widely used techniques is to tra
form the variables of the model to phase variables, wh
provides a uniform and powerful way to deal with the pro
lem @9,12,11#. This naturally requires that all units have
common period of oscillation, independent of each spec
firing time as well. Here we consider a stochastic model~not
as a small perturbation of a deterministic system!, which
simply implies that the method mentioned above is not
2987 ©2000 The American Physical Society



io
d

iv
of
ca
rt
o
a
fi-
ha
ea
n

ic
st

he
n
t

ni

e
ic
o

ud

is
en
b-
en
fo
Re

tw

in

ith

he
is-

ical

is

n-

ut
put

n.
za-
e in
ow

1:

ro-
f

re
cal
yn-
an
nd

2988 PRE 61JIANFENG FENG, DAVID BROWN, AND GUIBIN LI
plicable since we do not have a common period of oscillat
@15#. Another powerful technique is to utilize the so-calle
firing mapping which connects the firing times of success
spikes @16,17#. Unfortunately, the first passage time
Stein’s model is so complex that up to today no analyti
formula is available in spite of many years research effo
@18#. Hence we are not able to apply these techniques to
problem. Our analytical analysis relies on the following fe
tures of the model. With probability one there is a suf
ciently long interval over which neither neurone fires so t
their membrane potentials have a chance to converge to
other within somee distance and the external input the
pushes both neurones over the threshold.

On the other hand, here we consider Stein’s model, wh
is derived from the study of neuronal behavior and stocha
inputs ~see further discussion in Sec. VII on this issue!. Its
noise term is proportional to its deterministic inputs. To t
best of our knowledge, all results in the literature on sy
chronization with the presence of noises are based on
assumption of weak noise, i.e., a perturbation of determi
tic system@14#.

II. MODELS

We consider a group of leaky integrate-and-fire neuron
with or without reversal potentials, subjected to inputs wh
are conventionally assumed to be Poisson processes. Fi
51,2, . . . ,m let Ni

E(t) andNi
I(t) be total excitatory and in-

hibitory inputs of thei th neurones with rateNElE andNIl I ,
whereNE(NI) is the number of total active excitatory~in-
hibitory! synapses andlE(l I) is the firing rate of excitatory
postsynaptic potentials~EPSP’s! @inhibitory postsynaptic po-
tentials ~IPSP’s!# of each excitatory~inhibitory! synapses.
Suppose thatxi(t) is the membrane potential of thei th neu-
rone at timet, thenxi(t) is governed by the following dy-
namics with initial statexi ,

dxi~ t !52
1

g
xi~ t !dt1adNi

E~ t !2bdNi
I~ t !,

xi~0!5xi ,
~2.1!

where 1/g is the decay rate,a.0 andb.0 are the magni-
tude of each excitatory and inhibitory input. As soon asxi(t)
reaches a prefixed valueVthre , the threshold,xi(t) is reset to
Vrest , the resting potential. The model defined by Eq.~2.1! is
usually called Stein’s model and it has been intensively st
ied for exploring properties of real neurones.

There is, however, asevereflaw for the model defined by
Eq. ~2.1!. We know that the voltage of single neurone
bounded from below, about 10 mV below the resting pot
tial, but xi(t) visits any negative value with a positive pro
ability. There are several ways to prevent this from happ
ing. One way is to impose a lower boundary condition
xi(t) and thus obtain a different process as considered in
@19#. Obviously this process andxi(t) are different; never-
theless, from numerical results the behavior of these
models are very close~not shown!. The other more biologi-
cally realistic modification is to include reversal potentials
Stein’s model@15#:
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dzi~ t !52
~zi~ t !2Vre!

g
dt1ā~VE2zi~ t !!dNi

E~ t !

1b̄~VI2zi~ t !!dNi
I~ t !,

zi~0!5zi , ~2.2!

zi(t),i 51,2, . . . ,m are now birth-and-death processes w
boundariesVE and VI @20#. Once zi(t) is below Vre , the
resting potential, the decay termzi(t)2Vre will push the
membrane potentialzi(t) up; whereas whenzi(t) is above
Vre the decay term will hyperpolarize it. Whenzi(t) hits the
threshold its value is reset toVre .

We first consider Stein’s model and then move to t
model with reversal potentials. For the convenience of d
cussion we have fixed a few parameters in our numer
simulationsNE5100 ~see Ref.@19# for a discussion on this
choice!, lE5l I5100 Hz andg520.2614.6 msec@21#.
We have used the same set of parameters elsewhere@22–
24,18,25#. Note that the intensity of incoming signals
10 000 Hz5NElE which is also equivalent to NE
5300, lE;33 Hz.

For a given neuronei let us denoteTn
( i ) as the occurrence

time of thenth spike. For two neuronesi , j the time

T~ i , j !5 inf$Tn
( i ) :Tn1p

( i ) 5Tk1p
( j ) ,n,k51,2, . . . ,p

50,1,2, . . . ,%

is their synchronization time.

III. EXAMPLE

We begin by giving an exact definition of a common i
put. A common inputimplies that allNi

E(t)5N1
E(t), Ni

I(t)
5N1

I (t),i 51, . . . ,m, i.e., the correlation between the inp
signals is one. Without the presentation of a common in
the system defined by either Eq.~2.1! or Eq. ~2.2! is run
under the assumption thatNi

E(t),i 51, . . . ,m, Ni
I(t),i

51, . . . ,m are i.i.d. inputs, i.e., inputs with zero correlatio
Before we analyze the detailed behavior of synchroni

tion of neurones here we first present a numerical exampl
Fig. 1 to show that, when a common input is presented, h
quickly neurones group themselves to fire together.

For 100 Stein neurones defined by Eq.~2.1!, we use
the following parameters in simulations shown in Fig.
NE5100, NI580, a5b50.5 mV,Vthre520 mV, Vrest
50 mV, lE5l I5100 Hz,g520.2 msec@18#. In Fig. 1~a!
a common input is turned on at time51000 msec~turned off
at time51500 msec! and 2000 msec~turned off at 2300
msec!. It is easily seen that the group of neurones synch
nize after a few~one to two! spikes, although the number o
neurones we consider here is large. In Fig. 1~b! 90% of both
excitatory and inhibitory inputs are common and 10% a
i.i.d. This is, of course, a more natural scenario in biologi
systems. As one can expect, the system will not fully s
chronize as in the case of 100% common inputs. But it c
be easily seen that synchronization is still quite good a
quick.
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IV. TWO NEURONES

A. Stein’s model

It is well known that the following stochastic differentia
equation is a good approximation~the so-called usual ap
proximation! of the dynamics defined by Eq.~2.1!:

dxi~ t !52
1

g
xi~ t !dt1mdt1sdBi~ t !,

~4.1!
xi~0!5xi ,

FIG. 1. One hundred Stein neurones easily synchronize wh
common stimulus is turned on~see text for further explanation an
parameters used in simulations!. ~a! All inputs are common.~b!
90% inputs are common and 10% are i.i.d.
whereBi is the standard Brownian motion and

H m5aNElE2bNIl I

s5Aa2NElE1b2NIl I
. ~4.2!

Analytically, the stochastic differential equation define
by Eq.~4.1! is easier to tackle than the jump process defin
by Eq. ~2.1!. We will restrict ourselves to Eq.~4.1! in the
following theoretical discussion, but use solely Eq.~2.1! in
numerical simulations.

Before going on to analyze properties of the system
fined by Eq.~4.2!, let us say a few words on the example
the previous section. With the parameters given in the pre
ous section, a fully coherent excitatory input causes a volt
increase of 10030.5550 mV. Hence one might conclud
that the phenomena observed in Sec. III are rather tri
since a coherent excitatory input will push all cells to fi
synchronously. However, Eq.~4.2! tells us that this is defi-
nitely not the case. Within a time steph.0, the determinis-
tic input to a cell is given by m5a(NElE2NIl I)
50.5(1003100/10002803100/1000)51 mV, which is far
below any reasonable membrane threshold. Then a na
question is that why all cells so quickly synchronize th
firing. Our following theoretical developments partly answ
the question.

Let T1
(1) ,T2

(1) , . . . be the firing times of the first neuron
and T1

(2) ,T2
(2) , . . . of the second neurone. Without loss

generality we suppose thatx1.x25Vrest and so

T1
(1),T1

(2),T2
(1),T2

(2), . . . .

Note that in the definition above, the stopping timeT1
(1) de-

pends on the initial valuex1. Define

y~ t !5ux2~ t !2x1~ t !u,

we have the following sequence of identities:

y~T1
(1)!5y~0!expS 2

T1
(1)

g D , ~4.3!

y~T1
(2)!5FVthre2y~0!expS 2

T1
(1)

g D GexpS 2
T1

(2)2T1
(1)

g D
~4.4!

5@Vthre2y~T1
(1)!#expS 2

T1
(2)2T1

(1)

g D ~4.5!

•••, ~4.6!

y~Tn
(1)!5@Vthre2y~Tn21

(2) !#expS 2
Tn

(1)2Tn21
(2)

g D , ~4.7!

y~Tn
(2)!5@Vthre2y~Tn

(1)!#expS 2
Tn

(2)2Tn
(1)

g D ~4.8!

since

a
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xi~ t !5expS 2
t2Ti

(m)

g D x~Ti
(m)!1mE

Ti
(m)

t

expS 2
t2s

g Dds

1sE
Ti

(m)

t

expS 2
t2s

g DdBi~s! ~4.9!

for Ti
(m)<t<Ti

(m11) . Therefore the synchronization tim
T(1,2) is given by

T~1,2!5 inf$Tn
(1) ,x1~Tn

(1)!.y~Tn
(1)!1Vthre%

` inf$Tn
(2) ,x2~Tn

(2)!.y~Tn
(2)!1Vthre%.

~4.10!

The sequencey(Tn
(1)),y(Tn

(2)) gives us information about th
position of one neurone when the other neurone hits
threshold. For example whent5T1

(1) we see that due to th
leakage the difference of the membrane potential betw
two cells reduces fromx1 to x1 exp(2T1

(1)/g). Nevertheless a
t15T1

(1)1 the difference between these two cells are
larged provided thatx2(T1

(1)).Vthre/2. Then starting from
y(T1

(1)1) the difference between them is reduced aga
When the sequence of firing times is deterministic the
quencey defined above gives arise to a mapping on a cir
~after normalization! and is well studied in the literature@16#.
A variety of different behaviors including chaotic behavio
have been reported. However, in our case we can prove
following theorem.

Suppose that the probability space we consider
(V,F,P). For tPR1 it is reasonable to assume th
Px(T1

(1)>t).0, the probability of the event$T1
(1)>t% with

x1(0)5x, is a continuous function ofxP(Vrest ,Vthre) al-
though an analytical formula is not available.

Theorem 1. Within a finite time two Stein neurones s
chronize their firing with probability 1.

Proof: For any subset@a,b#,@Vrest ,Vthre# with a

.Vrest ,b,Vthre , positive number e.0, denote p̄
5 infxP[a,b] Px(T1

(1).A).0 where

A52g ln
e

Vthre
.

This implies that whenx1(t) hits the threshold at timeT1
(1)

.A,x2(t) is close to the threshold as well, within a distan
e. Define a set

Gn5$Tn
(1)2Tn21

(2) .A%.

Discretizing Eq.~4.1! with a time steph.0, let

B̄n5B1~Tn
(1)2Tn21

(2) !2B1~Tn
(1)2Tn21

(2) 2h!

and

Fn5$B̄n.~2mh1e!/s%, p5P~Fn!.0.

Note thatp is independent ofn. Then we have
e

en

-

.
-

e

he

is

-

FnùGn,$x1(t) and x2(t) synchronize at timeTn
(1) no

matter wherex1(Tn21
(2) ) is%.

Denote

En5$vPV,vPFnùGn but v¹ø i 51
n21Ei%,

we see that

øn51
` En,$x1~ t ! and x1~ t ! synchronize at finite time%.

SinceTi
(1) ,Ti

(2) are two renewal processes we thus conclu
that

P~øn51
` En!5 (

n51

`

pp̄~12pp̄!n2151. ~4.11!

Equation ~4.11! together with the arbitrary choice o
@a,b#,h,e imply our desired conclusion.

The following consideration illustrates the idea behind t
above proof. Starting from an arbitrary statey(0) we see that
two cells will gradually forget their initial difference, i.e., th
term y(Tn

(1)) will vanish whenTn
(1) is large. The larger the

decay rate 1/g the quicker the system forgets its initial di
ference. Once the potential of one neurone is near the thr
old and an incoming EPSP pushes the membrane pote
across it, ifTn

(1)2Tn21
(2) is large enough the membrane pote

tial of another neurone will be near the threshold as well a
an impulse will easily ensure it to hit the threshold. The
fore decay and pulse inputs are two vital important fact
for the model to show coherent behavior.

The theorem above tells us that two neurones will s
chronize but it does not tell us how quickly they will do s
Unfortunately, to find an analytical formula forT(1,2) is a
formidable task and we do not even have an exact expres
for Tn

(1) except for one special case. For theperfectintegrate-
and-fire model (g5`) an analytical expression forTn

(1) is
available; however, for reasons discussed above we ex
that it is much more difficult for perfect integrate-and-fi
units to synchronize.

Define a sequence of random setsAn ,Dn as

A15$v:x1~T1
(1)!.y~T1

(1)!1Vthre%,

D15$v:x1~T1
(2)!.y~T1

(2)!1Vthre ,v¹A1%,
~4.12!

An5$v:x1~T1
(n)!.y~T1

(n)!

1Vthre ,v¹~ø i 51
n21Ai !ø~ø i 51

n21Di !%,

Dn5$v:x1~T1
(n)!.y~T1

(n)!

1Vthre ,v¹~ø i 51
n Ai !ø~ø i 51

n21Di !%

then we have the following decomposition:

T~1,2!5(
i 51

`

@Ti
(1)I Ai

1Ti
(2)I Di

#, ~4.13!
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where I is the indicator function of a set. Define anoth
quantity

S5(
i 51

`

i I Ai
; ~4.14!

the expectation ofS gives the average number of spikes
the first neurone needed for the two neurones to synchron
called the average synchronization spike number. Since
output of Stein’s model is a renewal process we know
property of Ti

(1) if the corresponding property ofT1
(1) is

available.
Note thatx1(Tn

(1))5Vthre whenxi is defined by a stochas
tic differential equation which implies in theory thatAi ,i
>1 given by Eq.~4.12! are all empty. Of course ifxi is a
jump process as we discussed before this case will not
pen, both in theory and in numerical simulations. In act
numerical simulation of the usual approximation of Stein
model, this is certainly not the case@26#. For any givene
.0, a small positive number which can be neglected in
merical simulations, we have

A15$v,y~T1
(1)!,e% ~4.15!

or equivalently

A15H v,T1
(1).2g ln

e

y~0!J . ~4.16!

Similarly, we obtain

An5H v,Tn
(1).2g ln

e

Vthre2y~Tn21
(2) !

1Tn21
(2) ,

Ti
(1),2g ln

e

Vthre2y~Ti
(2)!

1Ti
(2) , ~4.17!

Ti
(2),2g ln

e

Vthre2y~Ti
(1)!

1Ti
(1) ,i 51, . . . ,n21J .

Hence, in principle, if we know the probability distributio
of T1

(1) we can calculate the synchronization timeT(1,2).
We have reported in early papers@18,25# that the CV of

efferent spikes of the model is an increasing function of
ratio r 5NI /NE . With a givenNE the larger the ratio, the
more the randomness of the output spikes and the less d
ministic inputs which is given bym5aNElE2aNIl I . We
see from Fig. 2 that the average synchronization time is n
monotone function of the ratio, while the average synchro
zation spike number is. The better the balance between
inhibitory and excitatory inputs, the fewer the spikes need
by the neurones to synchronize. For example whenr .0.5
and g55.6 msec two neurones fire together from the fi
spike.

Interestingly, the optimal average synchronization time
two neurones is about at~see Table I! r 5r 0 satisfying
CV(r 0)>0.5. It has been reported experimentally that
CV of neurones in visual cortex is above 0.5. This impl
e,
he
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that the optimal average synchronization time is attain
when the output of a neurone is inside the region with h
CV.

B. Stein’s model with reversal potentials

As we have reported in our early paper, one essen
difference between the model with or without reversal pot
tials is that the former one has a high CV even whenr is
small. Again in numerical simulations we employ the set
parameters in the literature@27# with VE550 mV,VI5
260 mV,Vth5230 mV,Vre5250 mV.

FIG. 2. Average synchronization time and spike of two Stei
neurones with different initial states. The average synchroniza
time and spike number are obtained forx2(0)51,2, . . . ,19 and
x1(0)5Vrest . Arrows in figure indicate the optimal average sy
chronization time. Note that they axis starts at 1 in the figures.

TABLE I. Optimal average synchronization time and CV
Stein’s model.

g ~msec! ST ~msec! CV

5.60 36.0 0.58
20.2 82.6 0.46
34.8 85.4 0.74
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Consider two neurones with identical inputs of Stein
model with reversal potentials:

dz1~ t !52@z1~ t !2Vre#/gdt1ā@VE2z1~ t !#dN1
E~ t !

1b̄@VI2z1~ t !#dN1
I ~ t !,

z1~0!5z1 ,
~4.18!

and

dz2~ t !52@z2~ t !2Vre#/gdt1ā@VE2z2~ t !#dN2
E~ t !

1b̄@VI2z2~ t !#dN2
I ~ t !,

z2~0!5z2 .
~4.19!

In the following consideration we requireā and b̄ satisfying
a local balance condition@27#:

ā~VE2Vre!5b̄~VI2Vre!.

As in the previous subsection let us defineT1
(1) ,T2

(1) , . . . as
the firing time of the first neurone andT1

(2) ,T2
(2) , . . . of the

second neurone. Without loss of generality we suppose
x1.x25Vre and so

T1
(1),T1

(2),T2
(1),T2

(2), . . . .

Denotey(t)5uz1(t)2z2(t)u satisfying ~under the condition
that a common input is presented!

dy~ t !52y~ t !/gdt2āy~ t !dN1
E~ t !2b̄y~ t !dN1

I ~ t !

or equivalently

y~ t !5y~0!exp@2t/g2āN1
E~ t !2b̄N1

I ~ t !# ~4.20!

with ā.0, b̄.0 andt,T1
(1) . We note the difference of the

term y(t) given by Eqs.~4.3! and Eq.~4.20!. With given
initial statesy(0),y(t) defined by Eq.~4.3! is smaller than
that of Eq. ~4.20! since the termāN1

E(t)1b̄N1
I (t).0. In

other words, Stein’s modelwith reversal potentialstends to
forget the initial state more quickly than Stein’s modelwith-
out reversal potentials, which, as we already elucidated
the previous subsection, certainly reduces the synchron
tion time. On the other hand, whenz1(t) is nearVth the
variation of Stein’s model with reversal potentials is

ā2~VE2Vth!2NElE1b̄2~VI2Vth!2NIl I

which is greater than the variation of Stein’s model witho
reversal potentials given by~independent of the threshold!

a2NElE1b2NIl I .

Due to the above reasons we conclude that Stein’s m
with reversal potentials will more easily synchronize th
Stein’s model, as confirmed in the following numerical sim
lations.
at

a-

t

el

-

By applying similar arguments as in the previous subs
tion we can prove

Theorem 2. With probability 1 two Stein’s cells with r
versal potentials synchronize their firing within a finite tim

From numerical results we observe similar behavior as
Stein’s model~see Fig. 3!. The average~synchronization!
spike is a decreasing function of the ratio. Whenr>0.4 the
average spike is one. Again we want to emphasize that
optimal synchronization time occurs at a point at which
CV is greater than 0.5, as summarized in Table II.

V. A GROUP OF NEURONES

We numerically simulate a group of neurones with ra
domly generated initial states inside@Vrest ,Vthre# for Stein’s

FIG. 3. Average synchronization time and spikes of two Stei
model with reversal potentials~comparing Fig. 2!. The average syn-
chronization time and spike are obtained forx2(0)51,2, . . . ,19
andx1(0)5Vre . Arrows in the figure indicate the optimal synchro
nization time.

TABLE II. Optimal average synchronization time and CV o
Stein’s model with reversal potentials.

g ~msec! ST ~msec! CV

5.60 13.6 0.61
20.2 15.0 0.63
34.8 16.7 0.62
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FIG. 4. Histograms of
T(2), T(10), T(100), T(200)
vs time in the unit of msec.
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model. DenoteT(m) as the time when allm neurones syn-
chronize i.e.,

T~m!5max$T~1,i !,i 51, . . . ,m%.

In fact, we have
Theorem 3. For a group of Stein’s models with or withou

reversal potentials,

P@T~m!,`#51.

The proof of the theorem is similar to that for two ce
and so we omit it.

A numerical study ofT(m) will give us informative re-
sults on how neurones fire synchronously. Let us cons
the dependence of the distribution ofT(m) on m. We carry
out a systematic numerical simulations~see Fig. 4! for the
case of m52,10,100,200 under the condition thatg
520.2 msec, r 50.8 which roughly corresponds to the o
timal synchronization time in Fig. 2.

Whenm52 we see the possibility of instantaneous sy
er

-

chronization of the two neurones. The left side of the his
gram is close to zero. Whenm>10 the distribution ofT(m)
is stabilized. There is a time lag for neurones to synchron
and the peak of the distribution is around 100 msec, i.e.,
most likely case is that they (m>10) synchronize after abou
100 msec~see Fig. 4!. Note that here we require all neurone
to exactlysynchronize. In Fig. 1 we have numerically show
that as soon as a common input is presented, all neuro
tend to fire together instantaneously.

VI. WITH LOCAL INTERACTIONS

Our results in the previous sections tell us that a comm
input can group neurones to fire together in a short time
provide us a mechanism to explain oscillatory synchroni
tion in separated areas in the cortex. It is obvious that n
rones are intensively connected via excitatory and inhibit
interactions. What is the implication of our results for loca
interacting neurones?

For i 51, . . . ,m, consider the following models:
dxi~ t !52
1

g
xi~ t !dt1adNi

E~ t !2bdNi
I~ t !1 f i~x1 ,x2 , . . . ,xm ;t !,

xi~0!5xi ,
~6.21!
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where f i is a function ofx1 ,x2 , . . . ,xm ,t. For example, we
can takef i(x1 ,x2 , . . . ,xm ,t)5( j (nwi j a(t,Tn

( j ) ,D i j ) where
a is the a function andD i j is the delay of the spike trans
mission between thei th and j th cell. Assume further thatf i
is independent ofi. This is approximately true, for exampl
if we assume thatTn

( j ) ,D i j are i.i.d. random sequences an
wi j 5wu i 2 j u ~the central limit theorem!. Then our theorem in
the previous section is still true, i.e., neurones will synch
nize within a finite time with probability one. Here the sy
chronization time depends on the choice off. It is obviously
interesting to find under which conditions onf synchroniza-
tion is sped up or slowed down. We explore this in a furth
paper.

VII. DISCUSSION

We proved theoretically that Stein’s model with or wit
out reversal potentials is capable of synchronizing within
finite time and numerically that the time for them to synch
nize is almost instantaneous. Our results might provid
possible mechanism for the phenomena of stimulus-evo
oscillatory synchronization in widely separate cortex ar
which has been observed in experiments@13#. On the other
hand, our results also lay a foundation for further investi
tion, in particular on the role of local interactions as we ha
discussed in the previous section.

According to our results presented here we also wan
point out another possible role played bylocal connections,
except for its role of speeding up or slowing down the sy
chronization time: the brain is wired in such a way as
adjust the input of synchronized neurones so that they
ceive common inputs. Furthermore, it will be interesting
see how the mechanism found here works for more bioph
cally realistic models like FitzHugh-Nagumo and Hodgki
Huxley models.

Let us have a comparison between the phenomena of
chastic resonance and the one we observed here, i.e.
optimal synchronization time is obtained at a value at wh
,

ur

om
-

r

a
-
a
d
s

-
e

to

-

e-

i-

to-
the
h

the output CV is between 0.5 and 1. For a given stocha
dynamic system with a parameter which is a measuremen
the noise in the system, the output signal is optimized a
value of the parameter. This phenomena is called the
chastic resonance. Hence the observed phenomena in
paper can be viewed as a kind of stochastic resonance i
mean synchronization time is thought of as an output and
ratio r as a measurement of the noise in the system. Altho
the stochastic resonance has been widely studied in the
erature, a convinced biological system which employs it h
not yet been found. Our results provide such an example
system which naturally exhibits the stochastic resonance

Finally, we discuss the implication of random inputs, i.
Poisson process inputs, in our model. This is a puzzling is
and a solid answer can be provided only in terms of exp
ments. In Ref.@28# the authors pointed out that ‘‘reliability
of spike timing depended on stimulus transients. Flat stim
led to imprecise spike trains, whereas stimuli with transie
resembling synaptic activity produced spike trains with ti
ing reproducible to less than one millisecond.’’ However, w
must emphasize here that their experiments are carried o
neocorticalslices. It is interesting to see that the variabilit
of spike trains depend on the nature of inputs, butin vivo
recording tells us that CV of efferent spikes trains might
very different. For example, it is reported that CV is betwe
0.5 and 1 for visual cortex~V1! and extrastriate cortex~MT!
@29#; even in the human motor cells their CV is between 0
and 0.25~Ref. @30#, p. 597!. We have concrete examples
show that a group of cellsin vivo behave totally different
from in slices. Oxytocin cells burst synchronouslyin vivo,
but this property is totally lost in slice~see Ref.@31# and
references therein!. Most recently it is reported that random
rather than deterministic inputs play an important role
motor planning@32#.

ACKNOWLEDGMENTS

The work was partially supported by BBSRC and
ESEP of the Royal Society.
J.

ce

ts
s

ten

ia,
@1# L.F. Abbott and C. van Vreeswijk, Phys. Rev. E48, 1483
~1993!.

@2# W. Gerstner, A.K. Kreiter, H. Markram, and A.V.M. Herz
Proc. Natl. Acad. Sci. USA94, 12 740~1997!.

@3# P.R. Roelfsema, A.K. Engel, P. Koenig, and W. Singer, Nat
~London! 385, 157 ~1997!.

@4# R. Ritz and T.J. Sejnowski, Curr. Opin. Neurobiol.7, 536
~1997!.

@5# W. Singer and C.M. Gray, Annu. Rev. Neurosci.18, 555
~1995!.

@6# L. Glass and M. C. Mackey,From Clocks To Chaos~Princeton
University Press, Princeton, NJ, 1988!.

@7# P.C. Bressloff and S. Coombes, Phys. Rev. Lett.78, 4665
~1997!.

@8# W. Gerstner, J.L. van Hemmen, and J.D. Cowan, Neural C
put. 8, 1653~1996!.

@9# D. Hansel, G. Mato, and C. Meunier, Neural Comput.7, 307
~1995!.

@10# J.J. Hopfield and A.V.M. Herz, Proc. Natl. Acad. Sci. USA92,
6655 ~1995!.
e

-

@11# C. Van Vereeswijk, L.F. Abbott, and G.B. Ermentrout,
Comput. Neurosci.1, 313 ~1994!.

@12# Y. Kuramoto,Chemical Oscillations, Waves and Turbulen
~Springer, New York, 1984!.

@13# W. Singer, inModels of Neural Networks II: Temporal Aspec
of Coding and Information Processing in Biological System,
edited by E. Domany, J.L. van Hemmen, and K. Schul
~Springer-Verlag, New York, 1994!.

@14# S. Albeverio, J. Feng, and M. Qian, Phys. Rev. E52, 6593
~1995!.

@15# H.C. Tuckwell,Stochastic Processes in the Neurosciences~So-
ciety for Industrial and Applied Mathematics, Philadelph
1988!.

@16# J.P. Keener, F.C. Hoppensteadt, and J. Rinzel, SIAM~Soc.
Ind. Appl. Math.! J. Appl. Math.41, 503 ~1981!.

@17# R.E. Mirollo and S.H. Strogatz, SIAM~Soc. Ind. Appl. Math.!
J. Appl. Math.6, 1645~1990!.

@18# J. Feng and D. Brown, Biol. Cybern.78, 369 ~1998!.
@19# M.N. Shadlen and W.T. Newsome, Curr. Opin. Neurobiol.4,

569 ~1994!.



PRE 61 2995SYNCHRONIZATION DUE TO COMMON PULSED INPUT . . .
@20# J. Feng, J. Theoretical Probability9, 285 ~1996!.
@21# T.W. Troyer and K.D. Miller, Neural Comput.9, 733 ~1997!.
@22# D. Brown J. Feng, and S. Feerick, Phys. Rev. Lett.82, 4731

~1999!.
@23# J. Feng, Phys. Rev. Lett.79, 4505~1997!.
@24# J. Feng and D. Brown, J. Phys. A31, 1239~1998!.
@25# J. Feng, and D. Brown~unpublished!.
@26# J. Feng, G. Lei, and M. Qian, J. Comput. Math.10, 376
~1992!.
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