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Synchronization due to common pulsed input in Stein’s model
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It is known that stimulus-evoked oscillatory synchronization among neurones occurs in widely separated
cortical regions. In this paper we provide a possible mechanism to explain the phenomenon. When a common,
random input is presented, we find that a group of neurones—of Staitegrate-and-firemodel type with or
without reversal potentials—are capable of quickly synchronizing their firing. Interestingly the optimal average
synchronization time occurs when the common input has a high coefficient of variation of interspike intervals
(greater than 0)5for this model with or without reversal potentials. The model with reversal potentials more
quickly synchronizes than that without reversal potentials.

PACS numbd(s): 87.19.La, 87.10te

[. INTRODUCTION reveal when and how efficiently common inputs ensure that
neurones fire synchronously.
How neurones couple with each other to fisgnchro- We first consider two identical neurones with different

nouslyis an important issue both theoretically and experi-nitial states and suppose that they are subjected to common,
mentally[1-5]. It has been widely accepted that information PUt Stochastic, inputs propagating along excitatory and in-

is encoded by neurones via a variety of schemes: from thBIPIfOry synapses. The two neurones can be viewed as lo-
o . S . Cated either in separate areagth no local interactiop or
classic view of rate coding to the modern view involving

. . . . N . ¥ they receive inputs from many other neurones and therefore
time coding[2]. A typical example of time coding is brain e"contribution of each to the process of synchronization is

waves, oscillating at about 40 Hz for a group of neurones—mych smaller than surrounding inputs, or that local interac-
the so-called gamma rhythms, which appear to be involvegions ensure common inputs. Undgifferent (independent)

in higher mental activity and therefore are considered to b&timuli the synchronization is not observable, but under the
essential for processing information by the brfdd. How-  samestimuli the neuronal activities quickly cohere with each
ever, how neurones respond to external stimuli to organizether. This suggests that probably one of the most important
locally or over a wider range to fire together remains elusivefactors which synchronizes neuronal activities is theim-
with a few mechanisms, such as recurrent inhibition, mutuaon inputs. Let us denote the time at which two neurones

excitation, intrinsic oscillators, and mutual inhibition having Synchronize as theynchronization timelnterestingly, the
been put forward. shortest average synchronization time is attained when the

For the purpose of elucidating mechanisms of OSCiIIatorycoefflment of variation of interspike interval€V (1Sl)] of

S : . . individual neurones is greater than 0.5, i.e., inside a high CV
synchronisation, networks of integrate-and-fire units haVEfISI) region. Although the different roles of noise accompa-
been extensively studied in the literatfifie-9]. We mention

. | nying the signals in the brain have been explotsee, for
but a few studies. In Re[.lo]_ the authors prpved the exis- oyample, Ref[14]), why the brain employs such a noisy
tence of the Lyapunov function for a specific case of '”ter'signal for processing information remains unclear. Our

actions. In Ref[11] two identical interacting neurones were theory here reveals one possible role of noise: to synchronize
inVeStigated and |t was found that Whether two neurones ﬁrﬁeurona| activities qu|ck|y A|though here we exc|usive|y
synchronously or not depends on the rise time of the synapsgnsider the case of inputs with zero rise tindepulse cur-
per se in particular, inhibitory rather than excitatory interac- rent inpuj, we expect our conclusions can be generalized to
tions facilitate the synchronization of neuronal activities. a more realistic case with a nonzero rise time cousse
These studies above are confined to the case of determigec. V). Further numerical examples and theoretical results
istic inputs, but there is a consensus that the inputs and oubn the synchronization of a large group of neurones are in-
puts of single neurones are frequently stochastic. If low ameluded and properties of synchronization time are discussed.
plitude random noise is added to the system discussed in Ref. We want to compare our approach and results with those
[11] then the coherent behavior simply disappears, as thean the literature. Synchronization is obviously one of the
retically studied in Ref[12]. Furthermore, and most impor- most important phenomena observed in nature, but the model
tantly, experimental resul{8] tell us that neurones in widely mimicking the phenomenon is usually hard to tackle theo-
separated areas—which implies there is no local interactioretically. One of the most widely used techniques is to trans-
among them—are capable of synchronizing with zero time€form the variables of the model to phase variables, which
lag. This possibly indicates that inputs play a vital role in theprovides a uniform and powerful way to deal with the prob-
synchronization, at least for neurones in widely separatetbm [9,12,17. This naturally requires that all units have a
areas(see further discussion in Secs. VI and VII on local common period of oscillation, independent of each specific
interactions and Ref.13]). The purpose of the paper, as a firing time as well. Here we consider a stochastic mddet
first step towards carrying out a systematic study on possiblas a small perturbation of a deterministic systemhich
mechanisms of synchronization with stochastic inputs, is taimply implies that the method mentioned above is not ap-
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plicable since we do not have a common period of oscillation
[15]. Another powerful technique is to utilize the so-called
firing mapping which connects the firing times of successive
spikes [16,17]. Unfortunately, the first passage time of
Stein’s model is so complex that up to today no analytical
formula is available in spite of many years research efforts
[18]. Hence we are not able to apply these techniques to our
problem. Our analytical analysis relies on the following fea-

tures of the model. With probability one there is a suffi- 7(t),i=1,2,... m are now birth-and-death processes with
ciently long interval over which neither neurone fires so thatyoundariesve and V, [20]. Oncez(t) is below V,., the
their membrane potentials have a chance to converge to eagBsting potential, the decay teram(t)—V,. will push the
other within somee distance and the external input then membprane potentiat;(t) up; whereas whem;(t) is above

pushes both neurones over the threshold. -  V,e the decay term will hyperpolarize it. Whex(t) hits the
On the other hand, here we consider Stein’s model, whiclhreshold its value is reset 1, .

inputs (see further discussion in Sec. VIl on this isss  model with reversal potentials. For the convenience of dis-
noise term is proportional to its deterministic inputs. To thecyssion we have fixed a few parameters in our numerical
best of our knowledge, all results in the literature on syn-gimy|ationsNg= 100 (see Ref[19] for a discussion on this
chronization with the presence of noises are based on thggicg, A\g=\,=100 Hz andy=20.2+14.6 msec[21].
a_lssumption of weak noise, i.e., a perturbation of determinisyye have used the same set of parameters elsewBgre
tic system[14]. 24,18,23. Note that the intensity of incoming signals is
10000 HzZ=Nghg which is also equivalent toNg
=300, A\g~33 Hz. _

For a given neuronglet us denotel!) as the occurrence

We consider a group of leaky integrate-and-fire neuronesime of thenth spike. For two neurondsj the time
with or without reversal potentials, subjected to inputs which
are conventionally assumed to be Poisson processes. For
=1,2,...mlet NiE(t) and Ni'(t) be total excitatory and in-
hibitory inputs of thath neurones with ratBlg\ g andN\ |,
where Ng(N,) is the number of total active excitatofin-
hibitory) synapses anlg(\,) is the firing rate of excitatory
postsynaptic potential€PSP’$ [inhibitory postsynaptic po-
tentials (IPSP’9] of each excitatory(inhibitory) synapses.
Suppose tha;(t) is the membrane potential of thth neu-
rone at timet, thenx;(t) is governed by the following dy-
namics with initial state; ,

_ (Zi(t) _Vre)

dz(t)= dt+a(Ve—z(t)dNF(t)

+b(V,—z(1)dNK(),

z(0)=z, (2.2

Il. MODELS

TG, ) =inf{TY T =T

n+p

=0,1,2...}

,nk=12,...p

is their synchronization time.

IIl. EXAMPLE

We begin by giving an exact definition of a common in-
put. A common inpuimplies that allNF(t)=NE(t), Ni(t)
=Ni(t),i=1,...m, i.e, the correlation between the input
signals is one. Without the presentation of a common input
the system defined by either E(R.1) or Eq. (2.2) is run
under the assumption thaNF(t),i=1,...m, Ni(t),i
=1,... mare iid. inputs, i.e., inputs with zero correlation.

Before we analyze the detailed behavior of synchroniza-

dx;(t)=— %xi(t)dH adNF(t)—bdN/(t),

(2.1
X (0)=Xx;,

where 1# is the decay rateg>0 andb>0 are the magni-
tude of each excitatory and inhibitory input. As soorxg$)
reaches a prefixed valigy,, the thresholdy;(t) is reset to
V,est: the resting potential. The model defined by Efjl) is

tion of neurones here we first present a numerical example in
Fig. 1 to show that, when a common input is presented, how
quickly neurones group themselves to fire together.

For 100 Stein neurones defined by E.1), we use

usually called Stein’s model and it has been intensively studthe following parameters in simulations shown in Fig. 1:

ied for exploring properties of real neurones.

There is, however, aevereflaw for the model defined by

NE=1001 N|=80, a=b=05 mV,Vthre=20 mV, Vrest
=0 mV,Ag=\,=100 Hz,y=20.2 mse¢18]. In Fig. 1(a)

Eqg. (2.1). We know that the voltage of single neurone isa common input is turned on at tirsd.000 msedturned off
bounded from below, about 10 mV below the resting potenat time=1500 mseg and 2000 msedcturned off at 2300
tial, but x;(t) visits any negative value with a positive prob- mseg. It is easily seen that the group of neurones synchro-
ability. There are several ways to prevent this from happennize after a few(one to twg spikes, although the number of
ing. One way is to impose a lower boundary condition forneurones we consider here is large. In Figp) 0% of both
X;j(t) and thus obtain a different process as considered in Reéxcitatory and inhibitory inputs are common and 10% are

[19]. Obviously this process anx{(t) are different; never-

i.i.d. This is, of course, a more natural scenario in biological

theless, from numerical results the behavior of these tweystems. As one can expect, the system will not fully syn-

models are very closgot shown. The other more biologi-

chronize as in the case of 100% common inputs. But it can

cally realistic modification is to include reversal potentials inbe easily seen that synchronization is still quite good and

Stein’s mode[ 15]:

quick.
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whereB; is the standard Brownian motion and

100 ——
M:aNE}\E_ bN|)\|
g— \/aZNE)\E+ b2N|)\|'

(4.2
80 -
Analytically, the stochastic differential equation defined

by Eq. (4.1 is easier to tackle than the jump process defined
by Eq. (2.1). We will restrict ourselves to Eq4.1) in the

60 1 following theoretical discussion, but use solely E8.1) in
Jo) numerical simulations.
3 Before going on to analyze properties of the system de-
: fined by Eq.(4.2), let us say a few words on the example of
40 . . . . . .
» the previous section. With the parameters given in the previ-
ous section, a fully coherent excitatory input causes a voltage
increase of 10800.5=50 mV. Hence one might conclude
0L that the phenomena observed in Sec. Il are rather trivial
since a coherent excitatory input will push all cells to fire
synchronously. However, E@4.2) tells us that this is defi-
: nitely not the case. Within a time stép>0, the determinis-
0 e e o tic input to a cell is given by u=a(Nghg—N\))
0 50 100 150 200 250 300 =0.5(100< 100/1006- 80X 100/1000)=1 mV, which is far
ime (10 msec)
below any reasonable membrane threshold. Then a natural
100 (b) question is that why all cells so quickly synchronize their
- R firing. Our following theoretical developments partly answer
the question.
Let TV, TSD ... be the firing times of the first neurone
8o L and T, T?) ... of the second neurone. Without loss of
generality we suppose tha{>X,=V,.s; and so
ok TH<T@P<TW<T@< |
P Note that in the definition above, the stopping tiffig’ de-
3 v pends on the initial valug,. Define
40 |
y(1)=[Xa(t) =xa(1)],
- we have the following sequence of identities:
20 b
(L
y(T{) =y<0>exp( - 7) , 43
0 7 LT : : S : : .
0 50 100 150 200 250 300 T T TP
Time (10 msec) y(T¥) = vmre—y<0>exp( - 7) exp( R )
FIG. 1. One hundred Stein neurones easily synchronize when a (4.9
common stimulus is turned ofsee text for further explanation and
parameters used in simulationga) All inputs are common(b) T@_TM
i Vi 1 1
90% inputs are common and 10% are i.i.d. :[Vthre—y(T(ll))]eXF{ _ T) 4.5
IV. TWO NEURONES
A. Stein’s model T (4.6
It is well known that the following stochastic differential 1) (2
equation is a good approximatidithe so-called usual ap- y(T(l))=[V _y(T(g) Yexd — Th'—Thsa @7
proximation of the dynamics defined by E¢R.1): n thre n-1 ¥ P
dx(1) = — =x, (D dt+ pdt+ od Ty
N0 == At pdtr odB(©), y(T‘n2>>=[vthre—y(T<n1>>]exp( - ) (4.8

4.1)
Xi(0)=Xxj, since
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t—T(m - t t—s F,NG,C{x1(t) and x,(t) synchronize at tim&") no
X(t)=exp — 5 X(T; HMJT{”‘)EX R ds matter wherex,(T?),) is}.
. —s Denote
+0'f expg — —|dB;i(s) (4.9
T(m Y

E,={wecQ,0eF,NG, but we U 'E},

for TM<t<T(MY  Therefore the synchronization time

L we see that
T(1,2) is given by

Ur_,E,C{x.(t) and x,(t) synchronize at finite ti
T(1,2=inf{{T xg (T8 >y(TE) + Vi) r=aEnC (1) 0 sy e

AINFTD 3 (TO) > y(TO) + Vi) SinceT™, T are two renewal processes we thus conclude
’ ' that
(4.10
The sequencg(TV),y(T(?)) gives us information about the P(U_.E)=" pp(1-pp"t=1. (4.1
position of one neurone when the other neurone hits the = I -

threshold. For example wher=T{") we see that due to the

leakage the difference of the membrane potential betweeRduation (4.11) together with the arbitrary choice of
two cells reduces from; to x; exp(-T/4). Nevertheless at [a,0],h, e imply our desired conclusion. _ _
t+=T{+ the difference between these two cells are en- The following consideration illustrates the idea behind the
larged provided thakz(T(ll))>ere/2- Then starting from above proof. Starting from an arbitrary stgi@) we see that

y(T(11)+) the difference between them is reduced again;\évr?nce("_?(\l'\)l;” grl?dl;il_lzr]for%eetnt$gl)r .'2'::1: c(ja'ﬁ?_rhe:?:r’ '5"t:;e
When the sequence of firing times is deterministic the se- y{Tn7) WIT vanish w n’ | ge. The farger the
decay rate Iy the quicker the system forgets its initial dif-

uencey defined above gives arise to a mapping on a circl . .
d 4 9 pping eference. Once the potential of one neurone is near the thresh-

(after normalizationand is well studied in the literatufé]. d and . ing EPSP hes th b tential
A variety of different behaviors including chaotic behaviors ©'@ 8n¢ an '(Q,CO”‘('Q)Q . pushes the memorane potentia
ross it, ifT;’— T, is large enough the membrane poten-

have been reported. However, in our case we can prove tHee i
following theorem. tial of another neurone will be near the threshold as well and

Suppose that the probability space we consider i&" impulse will easily ensure it to hit the threshold. There-
(Q,F.P). For teR! it is reasonable to assume that fore decay and pulse inputs are two vital important factors

P(T{M=t)>0, the probability of the evenfT{¥=t} with for_IEEe rt?]odel to SBOW c;)k;lerent t?}ef:a}[wor. "
X1(0)=x, is a continuous function ok e (V,est,Vinre) al- © theorem above tefis us that two neurones wit syn-

: ; : chronize but it does not tell us how quickly they will do so.

though an analytical formula is not available. Unfortunately, to find an analytical formula far(1,2) is a

Theorem 1. Within a finite time two Stein neurones Synformidable task and we do not even have an exact expression
chronize their firing with probability 1 for Tgl) except for one special case. For perfectintegrate-

Proof: For any subset[a,b]C[V,es;,Vinre] With a  and-fire model §=o) an analytical expression foF(" is
>V est;b<Vinre, poOsitive number e>0, denote p availgb_le; however, for_rgasons discusse_d above we expect
=infyc (a0 P(T{Y>A)>0 where that it is much more difficult for perfect integrate-and-fire

' units to synchronize.

. Define a sequence of random séts,D,, as

A=—1vylIn .
Vthre

Ar={0:x (T >y(T) + Viprel

This implies that whenx,(t) hits the threshold at tim&{")
>A,X,(t) is close to the threshold as well, within a distance D1={w:X(T)>y(T®) + Vinre, 0 & A1},
e. Define a set (4.12
An={wxy(T{) >y (T{)
Gy ={TH-T2,>A}. ) . .
+Vthre’w¢(UinzlAi)U(Uinlei)}’

Discretizing Eq.(4.1) with a time steph>0, let

5 W_1@ W_1@ Dn={oa(T{)>y(TY")

B,=B(Ty’—Ty2)—By«(Ty'—T2,—h) _

" v v +Vinre, @ & (U1 A)U(UTZ{D))}
and . -
then we have the following decomposition:

F,={B,>(—uh+e)lc}, p=P(F,)>0.

T(1,2=2, [TOI,+TPIp ], 4.1
Note thatp is independent of. Then we have (12 21[' AT o] .13
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where | is the indicator function of a set. Define another

2991

. 450 |
quantity
400 |
- 350 |
S=2 il (4.14
=1 ~ 300
]
the expectation of gives the average number of spikes of ZE), 250 ¢
the first neurone needed for the two neurones to synchronize, 2 ol
called the average synchronization spike number. Since the F
output of Stein’s model is a renewal process we know the 150 |
property of T if the corresponding property of{® is 100 |
available.
Note thatx;(T{") =V, whenx; is defined by a stochas- N
tic differential equation which implies in theory that ,i ' : ' '
=1 given by Eq.(4.12 are all empty. Of course i; is a 02 04 06 08 1
. . . b The ratio r
jump process as we discussed before this case will not hap-
pen, both in theory and in numerical simulations. In actual 80 ' ' '
numerical simulation of the usual approximation of Stein’s ol
model, this is certainly not the ca$@6]. For any givene
>0, a small positive number which can be neglected in nu- I < _
) ; ) 60 ¥ =5.60msec
merical simulations, we have Y=20.2msec ——
§ 501 Y=34.8msec -
_ 1) =
Ar={0,y(T{)<e} (4.15 3
o w5
or equivalently g
: w0
Alz{w,T(ll)>—«y|nL . (4.16 20}
y(0)
Similarly, we obtain or R
€ 02 04 06 08 1
A = w,Tgl)>—y|n—(2)+ 512_)1, The ratio r
Vinre— Y(T
thre™Y(Tn=a) FIG. 2. Average synchronization time and spike of two Stein’s
neurones with different initial states. The average synchronization
) @) time and spike number are obtained fof(0)=1,2,...,19 and
Ti<- 7|n—v _ (T-(z)) T (4.17 X1(0)=V,est- Arrows in figure indicate the optimal average syn-
thre = Y( 1, chronization time. Note that thgaxis starts at 1 in the figures.
) 1) : that the optimal average synchronization time is attained
T 9<-vlIn +T;7,i=1,...n—1;.

Vthre_y(Ti(l))

Hence, in principle, if we know the probability distribution
of T{Y) we can calculate the synchronization tiffigl,2).
We have reported in early papdis3,25 that the CV of

efferent spikes of the model is an increasing function of th

ratior=N,/Ng. With a givenNg the larger the ratio, the

when the output of a neurone is inside the region with high
CV.

B. Stein’'s model with reversal potentials

e As we have reported in our early paper, one essential
difference between the model with or without reversal poten-
é@ls is that the former one has a high CV even whes

more the randomness of the output spikes and the less det
ministic inputs which is given byu=aNgAg—aN)\,. We
see from Fig. 2 that the average synchronization time is not
monotone function of the ratio, while the average synchroni-
zation spike number is. The better the balance between the
inhibitory and excitatory inputs, the fewer the spikes needed
by the neurones to synchronize. For example whet0.5

small. Again in numerical simulations we employ the set of
parameters in the literatur27] with V=50 mV,V,=
60 mV,Viy,=—30 mV,V,.=—-50 mV.

TABLE I. Optimal average synchronization time and CV of
Stein’s model.

and y=5.6 msec two neurones fire together from the first
spike.

Interestingly, the optimal average synchronization time of
two neurones is about aisee Table )l r=r, satisfying
CV(rp)=0.5. It has been reported experimentally that the

v (mseg ST (mseg cVv
5.60 36.0 0.58
20.2 82.6 0.46
34.8 854 0.74

CV of neurones in visual cortex is above 0.5. This implies
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Consider two neurones with identical inputs of Stein’s 0ol
model with reversal potentials:
_ £ 40 + Y=5.60msec ——
dzy(t)=—[2z1(t) = Vel ydt+a[ Ve— 21 (1) JANL(t) - Jz202msee
N | @ o
+b[V|_Zl(t)]dN1(t), (418 § 30 N
z,(0)=2,, =
1(0)=2 £l
and
10 |
dzy(t) = ~[Za(t) — Vyel ydt+a[ Ve 25(t) JAN5 (1) N
— 01 015 02 025 03 035 04 045 05
+b[V|—22(t)]dN|2(t), (4.19) The ratio r
22(0)222. 12
In the following consideration we requiEandEsatisfying 10
a local balance conditiof27]: Y ol
Q
_ -
a(Ve—=V,e)=b(V,=Vie). % 6
5}
As in the previous subsection let us defifg), TS, ... as z a4l
the firing time of the first neurone ard?, T, ... of the
second neurone. Without loss of generality we suppose that 2t
X1>X,=V,e and so
0 I 1 1 1 1 1 I
01 015 02 025 03 035 04 045 05

TH<T@<TW<TP@< | The ratio r

FIG. 3. Average synchronization time and spikes of two Stein’s
model with reversal potentialsomparing Fig. 2 The average syn-
chronization time and spike are obtained foi(0)=1,2, ..., 19
andx,(0)=V,e. Arrows in the figure indicate the optimal synchro-
nization time.

Denotey(t) =|z;(t) —z,(t)| satisfying (under the condition
that a common input is presenjed

dy(t)=—y(t)/ ydt—ay(t)dNE(t) — by(1)dNj(t)
or equivalently By applying similar arguments as in the previous subsec-
tion we can prove
Theorem 2. With probability 1 two Stein’s cells with re-
versal potentials synchronize their firing within a finite time.
From numerical results we observe similar behavior as for

y(t)=y(0)exd —t/y—aN§(t)—bNy(t)]  (4.20

with a>0, b>0 andt<T{¥. We note the difference of the

term y(t) given by Eqgs.(4.3) and Eq.(4.20. With given
initial statesy(0),y(t) defined byEq.(4.3) iismaller than
that of Eq.(4.20 since the termaN£(t)+bNj(t)>0. In
other words, Stein’'s modstith reversal potentialsends to
forget the initial state more quickly than Stein’s modéth-

out reversal potentialswhich, as we already elucidated in

Stein’s model(see Fig. 3 The averaggsynchronization
spike is a decreasing function of the ratio. When0.4 the
average spike is one. Again we want to emphasize that the
optimal synchronization time occurs at a point at which its
CV is greater than 0.5, as summarized in Table II.

the previous subsection, certainly reduces the synchroniza-

tion time. On the other hand, whex(t) is nearV,, the
variation of Stein’'s model with reversal potentials is

a%(Ve— Vi) 2Nehe+b2(V,—Vin) 2N\,

which is greater than the variation of Stein’s model without

reversal potentials given byndependent of the threshgld

a®Nghg+b?NjA, .

Due to the above reasons we conclude that Stein’s model
with reversal potentials will more easily synchronize than
Stein’s model, as confirmed in the following numerical simu-

lations.

V. A GROUP OF NEURONES

We numerically simulate a group of neurones with ran-
domly generated initial states insif€,qs:,Vinrel for Stein’s

TABLE Il. Optimal average synchronization time and CV of
Stein’s model with reversal potentials.

v (mseg ST (mseg cVv
5.60 13.6 0.61

20.2 15.0 0.63

34.8 16.7 0.62
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model. Denotel (m) as the time when alin neurones syn-
chronize i.e.,

T(m)=maXT(L,),i=1,... m}.

In fact, we have
Theorem 3For a group of Stein’s models with or without
reversal potentials,

P[T(m)<o]=1.

The proof of the theorem is similar to that for two cells

and so we omit it.
A numerical study ofT(m) will give us informative re-

W

Time (msec)

chronization of the two neurones. The left side of the histo-
gram is close to zero. Whan=10 the distribution ofl (m)

is stabilized. There is a time lag for neurones to synchronize
and the peak of the distribution is around 100 msec, i.e., the
most likely case is that theyr(=10) synchronize after about
100 msedsee Fig. 4. Note that here we require all neurones
to exactlysynchronize. In Fig. 1 we have numerically shown
that as soon as a common input is presented, all neurones
tend to fire together instantaneously.

VI. WITH LOCAL INTERACTIONS

Our results in the previous sections tell us that a common

sults on how neurones fire synchronously. Let us consideinput can group neurones to fire together in a short time and

the dependence of the distribution Bfm) on m. We carry
out a systematic numerical simulatiofsee Fig. 4 for the
case of m=2,10,100,200 under the condition that

=20.2 msec,r=0.8 which roughly corresponds to the op-

timal synchronization time in Fig. 2.

Whenm=2 we see the possibility of instantaneous syn-

1
dx;(t)=— ;xi(t)dt+ adNF(t)—

Xi(o):Xil

provide us a mechanism to explain oscillatory synchroniza-
tion in separated areas in the cortex. It is obvious that neu-
rones are intensively connected via excitatory and inhibitory
interactions. What is the implication of our results for locally
interacting neurones?

Fori=1,... m, consider the following models:

bdN! (t)+ fi(X1,X2, - . . Xm1),
(6.21)
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wheref; is a function ofx,X,, ... Xy,t. For example, we the output CV is between 0.5 and 1. For a given stochastic
can takef; (X3, Xz, - . . Xm, 1) =2;Zwi;e(t, TP A ;) where  dynamic system with a parameter which is a measurement of
a is the a function andA;; is the delay of the spike trans- the noise in the system, the output signal is optimized at a
mission between thith andjth cell. Assume further that ~ value of the parameter. This phenomena is called the sto-
is independent of. This is approximately true, for example chastic resonance. Hence the observed phenomena in this
if we assume thaT{),A;; are i.i.d. random sequences and P2Per can be viewed as a kind of stochastic resonance if the
) v ot vt Thn our e e SMnzalon e ot f g an v
the previous s.e(_:t|or.1 IS St'." true, .e., heurones will SynChro'the stochastic resonance has been widely studied in the lit-
nize W'th'.n a f'n'te time with probablllty one..Here .the SYN" erature, a convinced biological system which employs it has
chronization time depends on the choicef.dt is obviously ¢ yet been found. Our results provide such an example of
interesting to find under which conditions ésynchroniza- gy tem which naturally exhibits the stochastic resonance.
tion is sped up or slowed down. We explore this in a further * gina)ly we discuss the implication of random inputs, i.e.,
paper. Poisson process inputs, in our model. This is a puzzling issue
and a solid answer can be provided only in terms of experi-
VII. DISCUSSION ments. In Ref[28] the authors pointed out that “reliability
h. of spike timing depended on stimulus transients. Flat stimuli

out reversal potentials is capable of synchronizing within Aed to im_P’eCise sp_ike tr.ai.ns, Wwhereas stimuli W.ith ”"’?”Si‘?”ts
finite time and numerically that the time for them to synchro-.resembllng synaptic activity produqe_d spike trains with tim-
nize is almost instantaneous. Our results might provide ER reproduuble to less than one m|II|_second. Howeyer, we
possible mechanism for the phenomena of stimulus-evokeUst empha;uze here 'that the." experiments are carrlled'put n
oscillatory synchronization in widely separate cortex aregdieocorticalslices It is interesting to see that the variability

which has been observed in experimefit3]. On the other of spike trains depend on the nature of inputs, inuvivo
hand, our results also lay a foundation for further investiga-recordlng tells us that CV of efferent spikes trains might be

tion, in particular on the role of local interactions as we have/€" different. For example, itis reported that CV is between

discussed in the previous section. 0.5 and 1 for visual corte®/1) and extrastriate corteMT)

According to our results presented here we also want t&zgj; Oe\éeSnRinfthgohume;ngmo\;\(;r %ells their CVis betwelen 0.1
point out another possible role played lmgal connections and 0.25(Ref. [30], p. 597. We have concrete examples to

except for its role of speeding up or slowing down the syn-fShOW.thalt. a gr%uptof .cellmn V'\éo btehavehtotally .dlfft.arent
chronization time: the brain is wired in such a way as to rom in slices. Oxytocin cells burst synchronousty vivo,

adjust the input of synchronized neurones so that they reut this property 1s totally lost " ;Ilcésee Ref[31] and
ceive common inputs. Furthermore, it will be interesting toreferences therejnMost recently it is reported that random

see how the mechanism found here works for more biophysfather than deterministic inputs play an important role in

cally realistic models like FitzHugh-Nagumo and Hodgkin- motor planning 32].
Huxley models.

Let us have a comparison between the phenomena of sto-
chastic resonance and the one we observed here, i.e., theThe work was partially supported by BBSRC and an
optimal synchronization time is obtained at a value at whichESEP of the Royal Society.

We proved theoretically that Stein’s model with or wit
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